STAR Physics Program

Nu Xu

Nuclear Science Division
Lawrence Berkeley National Laboratory

Many thanks to the organizers: Z.T. Liang, Q.H. Xu, P. Zhuang ...

STAR Detectors: Full 2π particle identification!

Nu Xu

STAR Physics Focus

1) At 200 GeV top energy

- Study medium properties, EoS
- pQCD in hot and dense medium

2) RHIC beam energy scan

- Search for the **QCD** critical point
- Chiral symmetry restoration

Polarized spin program

- Study proton intrinsic properties

Forward program

- Study low-x properties, search for CGC
- Study elastic (inelastic) processes (pp2pp)
- Investigate *gluonic exchanges*

Proton Spin Physics

Nucleon Structure Function

Precision measurements (e.g. F_2) \Rightarrow **Precision on q/g structures**

f(g) >> f(q) at small x! Rich QCD phenomena.

Polarized p+p Program at RHIC

STAR: Large acceptance for correlation measurements

di-jets/hadron and γ-jet

$$x_{1(2)} = \frac{1}{\sqrt{s}} \left[p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right]$$

$$M = \sqrt{x_1 x_2 s} \qquad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2} \qquad \cos \theta^* = \tanh \left(\frac{\eta_3 - \eta_4}{2}\right)$$

$$\cos \theta^* = \tanh \left(\frac{\eta_3 - \eta_4}{2} \right)$$

∆g Measurements at RHIC

Status on Δg Measurements at RHIC

Run9 plan: STAR bottom line is to collect FoM: 6.5 pb⁻¹ (Run9: 2.3 pb⁻¹) inclusive jet, di-jets, γ-jet... analysis

STAR: internal review of the *strategy* for spin physics in light of Run9 data. (Sichtermann, Sowinski, Surrow)

STAR: 500GeV Low-x Program

STAR: The Sea-Quark Program

500 GeV p+p collisions

$$u + \overline{d} \to W^+ \to e^+ + \nu$$
$$\overline{u} + d \to W^- \to e^- + \overline{\nu}$$

Forward GEM Tracker: FGT

- 1) Charge sign identification for high momentum electrons from W[±] decay (Energy determined with EEMC)
- 2) Triple-GEM technology, Summer 2011 for Run12

Forward Small-x QCD Physics

(1) 200 GeV d+Au:

- forward small-x, scattering of asymmetric partonic collisions
- high-x valence q: $0.25 < x_q < 0.7$, large polarization
- low-x g: $0.001 < x_q < 0.1$
- → Color Glass Condensate: parton structure function. Theory: x_g~ 10⁻⁴

(2) <u>200/500 GeV p+p:</u>

→ Transverse spin phenomena: Siver or Collins effects

Fundamental QCD issues!

High-Energy Nuclear Collisions

sQGP and the QCD Phase Diagram

In 200 GeV Au+Au collisions at RHIC, strongly interacting matter formed:

- Jet energy loss: R_{AA}
- Strong collectivity: v₀, v₁, v₂
- Hadronization via coalescence: n_q-scaling

Questions:

Is thermalization reached at RHIC?

- Systematic analysis with dN/dp_T and dv₂/dp_T results...
- Heavy quark and di-lepton measurements

When (at which energy) does this transition happen? What does the QCD phase diagram look like?

- RHIC beam energy scan

High-Energy Nuclear Collisions

QCD Thermodynamics

- 1) At μ_B = 0: cross over transition, 150 < T_c < 200 MeV
- 2) The SB ideal gas limit: $T/T_c \sim 10^7$
- 3) $T_{ini}(LHC) \sim 2-3*T_{ini}(RHIC)$
- 4) Thermodynamic evolutions are similar for RHIC and LHC

Zoltan Fodor, Lattice 2007

Search for Local Parity Violation ...

The separation between the same-charge and oppositecharge correlations.

- Strong EM fields
- De-confinement and Chiral symmetry restoration

- PID LPV analysis with TOF
- RHIC BES: disappearance

Partonic Collectivity at RHIC

Low p_T (≤ 2 GeV/c): hydrodynamic mass ordering

High p_T (> 2 GeV/c): number of quarks ordering

s-quark hadron: smaller interaction strength in hadronic medium

light- and s-quark hadrons: similar v₂ pattern

=> Collectivity developed at partonic stage!

Current Measurements with J/Ψ

STAR submitted to PRL 0904.0439

Run10, $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions:

- 1) Measure the v_2 of J/Ψ , with the help of HLT
- 2) Measure the R_{AA} of J/Ψ at high transverse momentum $p_T > 5$ GeV/c

Flavor Dependence in R_{AA} and pQCD

STAR submitted to PRL 0904.0439

At $p_T \ge 5$ GeV/c: $R_{AA}(\pi) \sim R_{AA}(\rho^0) < R_{AA}(K) < R_{AA}(J/\psi)$

First Observation of ${}_{\overline{\Lambda}}{}^{3}\overline{H} \rightarrow {}^{3}\overline{H}e + \pi^{+}$

High Moment Analysis (BES)

- 1) High moments are more sensitive to critical point related fluctuation.
- 2) The 4th moment, Kurtosis, is directly related to the corresponding thermodynamic quantity: susceptibility for conserved quantum numbers such as Baryon number, charge, strangeness...

Nu Xu

STAR Detector

STAR: Physics with ToF

- Significant improve PID. With TPC, PID will be been extended to p_T ~ 15 GeV/c
- 2) Correlations with PID hadrons; resonances (up to Ω); trigger with high p_T hadrons ...
- 3) Beam energy scan program: event-by-event K/π analysis and net-p Kurtosis
- 4) 2π electron and di-electron analysis; heavy flavor program

Reconstruction Efficiency Improvement

STAR High Level Trigger

Run9 p+p 200 GeV, May 19 - 25

- Fast filtering for quick data analysis. Run10: try J/ψ v₂
- 2) Online QA

The di-Lepton Program at STAR

- ✓ ChiralSymmetryRestoration
- ✓ Direct
 Radiation from
 The Hot/Dense
 Medium
- * ToF Crucial for the physics.

Nu Xu

Direct Radiation

Di-leptons allow us to measure the direct radiation from the matter with partonic degrees of freedom, no hadronization!

- Low mass region:

$$\rho$$
, ω , $\phi \Rightarrow e^-e^+$
 $m_{inv} \Rightarrow e^-e^+$

medium effect Chiral symmetry

- High mass region:

$$J/\psi \Rightarrow e^-e^+$$

$$m_{inv} \Rightarrow e^-e^+$$

Direct radiation

STAR: Muon Telescope Detector

Muon Telescope Detector at STAR:

- 1) MRPC technology; $\mu_{\epsilon} \sim 45\%$; cover $\sim 60\%$ azimuthally and |y| < 0.25
- 2) TPC+TOF+MTD: muon/hadron enhancement factor ~ 10²⁻³
- 3) For trigger and heavy quarkonium measurements
- 4) China-STAR collaboration: a proposal will be ready in mid-Sept.

Nu Xu

STAR Heavy Flavor Tracker

HFT: 2012-2014

- 2-layer thin CMOS pixels;
 1-layer strips; SSD
- 2) First layer at 2.5 cm close to the beam pipe, 2pi coverage
- → Measure down to low p_T ~0.5 GeV/c for open charm hadrons

HFT: Charm Hadron v₂ and R_{AA}

- 200 GeV Au+Au m.b. collisions (500M events).
- Charm hadron collectivity ⇒ drag/diffusion constants ⇒

Medium properties!

- 200 GeV Au+Au m.b. collisions (|y|<0.5 500M events)
- Charm hadron R_{AA} ⇒
 - Energy loss mechanism!
 - QCD in dense medium!

BERKELEY LAB

Summary

STAR QCD physics program for next decade:

Spin Physics:

- 200 GeV: **Δ***g* inclusive and di-jets, γ-jet
- 500 GeV: sea quark helicity distributions
- 200/500 GeV: transverse spin phenomena

Heavy Ion Physics:

- Thermalization at 200 GeV
- QCD phase boundary and critical point
- In medium properties

Low-x Physics:

- Study gluon-rich phenomena at RHIC
- Color glass condensate

Timeline of QCD and Heavy Ion Facilities

